THE ORTHO-LITHIATION OF PHENYL GROUPS AND α -LITHIATION OF ALKYL GROUPS OF THIOPHOSPHORYL COMPOUNDS

Masaaki Yoshifuji,* Tadao Ishizuka, Yoon Jung Choi, and Naoki Inamoto Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113, Japan

 $\frac{\text{SUMMARY}}{\text{yl phosphine sulfides were } \alpha-\text{lithiated and the resulting lithic compounds reacted to give the corresponding <math>\underline{o}$ - and α -substituted products.

Very recently Dashan and Trippett¹ reported the ortho-lithiation of N,N,N', N'-tetramethylphenylphosphonic diamide. Now we wish to report promptly our preliminary results² on the reactions of phenyl-containing thiophosphoryl compounds with various alkyllithium reagents.

Attempted α -lithiations of N-alkyl groups in various thiophosphoryl amides under various conditions have been unsuccessful so far, although the corresponding reactions of 2-[bis(dimethylamino)phosphinoyl]-1,2,3,4-tetrahydroisoquinoline were successful.³,⁴ In contrast, we found that <u>o</u>-lithiation occurs to the diphenylphosphinothioic amides of the type <u>la-c</u> to give <u>2a-c</u> after quenching with electrophiles such as methyl iodide, D₂O, and H₂O as shown in Scheme I.

Scheme I

<u>la – c</u>

<u>2a - c</u>

<u>a</u>: R' = Ph; <u>b</u>: $R' = CH_2Ph$; <u>c</u>: $R' = CH_3$ $R = \underline{n} - Bu$, <u>s</u> - Bu, <u>t</u> - Bu <u>EX = MeI</u>, <u>D</u>₂O, <u>H</u>₂O Under argon N-methyl-N-phenyldiphenylphosphinothioic amide (<u>1a</u>) was dissolved in dimethoxymethane (DMM) at -78°C and was added 1.0 eq. of <u>s</u>-butyllithium in cyclohexane in the presence of 1.0 eq. of N,N,N',N'-tetramethylethylenediamine (TMEDA) to give an orange-red homogeneous solution. After quenching with excess amount of methyl iodide and D₂O at that temperature gave <u>2a</u> (E = Me) and <u>2a</u> (E = D) in 50 and 45% yields, respectively. No doubly lithiated products were observed. Under similar reaction conditions, <u>t</u>-butyllithium in pentane did not react with <u>1a</u>, however, at -10°C it started to react to give <u>2a</u> (E = Me) in 74% yield after quenching with methyl iodide. In order to confirm the structure of <u>2a</u> chemically it was cleaved with 2 eq. of <u>n</u>-butyllithium in THF at -50°C for 30 min, followed by quenching with water to form N-methylaniline and butylphenyl-<u>o</u>-tolylphosphine sulfide (<u>3</u>; see also Scheme II).

In a similar way, <u>lb</u> was allowed to react with t-butyllithium in a mixture of DMM - TMEDA at -10°C, and after quenching with methyl iodide, 2b (E = Me) was obtained in 31% yield accompanied with recovered lb. With s-butyllithium at -78°C for 30 min, the yield of 2b (E = Me) was only 15%. In tetrahydrofuran (THF) in the presence of TMEDA with n-butyllithium in hexane at -78°C for 30 min, 1b was recovered (67%) indicating that no lithiation occurred under such condi-No lithiation in benzylic position was observed in 1b, either. The tions. reaction of <u>lc</u> with excess of t-butyllithium in DMM with 1 eq. of TMEDA at -10°C gave the corresponding o-methylated compound 2c (E = Me) in 78% yield, however, no α -lithiation to N-methyls was observed. In a mixture of THF - TMEDA, neither o-lithiation nor α -lithiation was observed even though 2 eq. of t-butyllithium was employed (89% recovery). Similarly s-butyllithium reacted with <u>lc</u> in DMM -TMEDA at $-78 \neq -50^{\circ}$ C to give <u>2c</u> (E = Me) (61% yield) after the quenching with methyl iodide.

In order to investigate the generality of the ortho-lithiation in thiophosphoryl compounds, triphenylphosphine sulfide ($\underline{4}$) was allowed to react with \underline{s} butyllithium in a mixture of DMM - TMEDA - THF to give diphenyl-<u>o</u>-tolylphosphine sulfide ($\underline{5}$) in 26% yield accompanied with the recovered $\underline{4}$.

Moreover, when hexamethylthiophosphoric triamide was allowed to react with <u>s</u>-butyllithium under the same reaction conditions as those reported by Magnus and Roy⁵ for hexamethylphosphoric triamide, no reaction was observed.

 ${}^{31}P{}^{1}H$ NMR of N,N-dimethyl-o-lithiophenylphosphinothioic amide in DMM at -20°C appeared at δ_p 79.9 ppm and this peak gave the starting <u>lc</u> (δ_p 69.5 ppm) after quenching with water indicating a contribution of a chelation structure (A).

Table I. Some Important NMR Parameters (CDC1₃) in <u>o</u>-Lithiation Reactions

Compounds	³¹ P NMR 8 _P /ppm a)	¹ Η NMR δ/ppm b)
<u>la</u>	66.9	2.90 (Me, d, J = 12 Hz)
<u>2a</u> (E = Me)	66.5	2.40 (Me-arom., s) 3.10 (MeN. d. J=10 Hz)
<u>1b</u>	71.2	2.40 (MeN, d, $J = 14 Hz$) 3.85 (CH ₂ N, d, $J = 7 Hz$)
<u>2b</u> (E = Me)	68.7	2.40 (Me-arom., s) 2.44 (MeN, d, J = 10 Hz) 4.32 (CH ₂ N, d, J = 8 Hz)
<u>lc</u>	71.1	2.43 (Me, d, J = 14 IIz)
<u>2c</u> (E = Me)	68.8	2.40 (Me-arom., s) 2.60 (MeN, d, J = 12 Hz)
3	42.9	2.40 (Me-arom., s)
4	43.3	
5	42.1	2.37 (Me-arom., s)

a) δ_p Values are indicated in ppm from external 85% H_3PO_4 . b) All new compounds described here showed reasonable phenyl patterns in NMR and parent ion peaks in the mass spectra and/or correct elemental analyses.

Some important NMR characters of the starting materials and the products are shown in Table I.

When <u>la</u> was allowed to react with one equivalent of <u>n</u>-butyllithium in THF at $-40 \div -25^{\circ}$ C for 3 h, followed by methyl iodide quenching to give l-methylbutyldiphenylphosphine sulfide (<u>6</u>,⁶ 14% yield) and N,N-dimethylaniline (29%). When 2 eq. of <u>n</u>-butyllithium was used, the yield of <u>6</u> was raised up to 62% indicating the nucleophilic attack of <u>n</u>-butyllithium on phosphorus atom to give butyldiphenylphosphine sulfide (<u>7</u>)⁷ and lithium methylphenylamide as reaction intermediates. In a separate experiment <u>7</u> was first allowed to react with <u>n</u>-butyllithium and then with methyl iodide to give <u>6</u> in 91% yield indicating that α lithiation of alkylphosphine sulfide is quite facile as shown in Scheme II.

When benzyldiphenylphosphine sulfide $(\underline{8})^{*}$ was lithiated with <u>n</u>-butyllithium followed by quenching with benzaldehyde to give trans-stilbene in 74% yield¹⁰ after usual work-ups, whereas, methyldiphenylphosphine sulfide $(\underline{9})^{11}$ was lithiated on the methyl moiety, followed by quenching with benzophenone gave 2-hydroxy-2,2diphenylethyldiphenylphosphine sulfide $(\underline{10})^{12}$ in 82% yield.

The results described here indicate that ortho-lithiation of diphenylphosphinothioyl compounds and α -lithiation of alkylthiophosphoryl compounds occur smoothly probably because of the chelation of sulfur to lithium.

We thank Prof. D. Seebach at E.T.H.-Zürich for helpful discussions and valuable comments.

References and Notes

- 1. L. Dashan and S. Trippett, Tetrahedron Lett., 24, 2039 (1983).
- This work was taken in part from the Thesis for the Degree of Bachelor of Science of T. I. submitted to the University of Tokyo (March, 1981).
- 3. D. Seebach and M. Yoshifuji, Helv. Chim. Acta, 64, 643 (1981).
- 4. D. Seebach, J.-J. Lohmann, M. A. Syfrig, and M. Yoshifuji, Tetrahedron, <u>39</u>, 1963 (1983).
- 5. P. Magnus and G. Roy, Synthesis, 1980, 575.
- 6. <u>6</u> [mp 105 106°C; δ_p(CDCl₃) 53.3 ppm; ¹H NMR (CDCl₃) δ 1.10 ppm (1-Me, dd, J = 7 and 19 Hz].
- 7. <u>7</u> [mp 53 53.5°C; δ_p(CDC1₃) 40.5 ppm]; R. A. Zingaro, Inorg. Chem., <u>2</u>, 192 (1963).
- 8. <u>8</u> $[\delta_{\rm D}({\rm CDC1}_3)$ 42.1 ppm].⁹
- 9. T. Emoto, H. Gomi, M. Yoshifuji, R. Okazaki, and N. Inamoto, Bull. Chem. Soc. Jpn., 47, 2449 (1974).
- 10. C. R. Johnson and R. C. Elliott, J. Am. Chem. Soc., <u>104</u>, 7041 (1982).
- 11. 9 [oil; $\delta_{p}(CDCl_{3})$ 35.8 ppm].⁹
- <u>10</u> [mp 141 143°C; δ_p(CDC1₃) 34.7 ppm; ¹H NMR (CDC1₃) 3.53 (d, J = 10 Hz, 2H, CH₂), 6.47 ppm (s, 1H, OH)].

(Received in Japan 25 October 1983)